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bstract
Photocatalytically active titania (TiO2) nanoparticles are applied, and considered for application, in the degradation of hazardous substances.
owever, these nanoparticles are also hazardous by themselves. High efficiency immobilization of TiO2 nanoparticles on large inorganic supports

hat are not vulnerable to photocatalytic degradation is conducive to hazard reduction. Immobilization should also aim at minimizing the release
f TiO2 nanoparticles from such supports due to attrition. In doing so there may be a trade off between hazard and photocatalytic activity.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Titania (TiO2) nanoparticles, with a diameter <100 nm, are
pplied, and considered for application, in environmental tech-
ology [1–52]. The focus of this application is often the
egradation of hazardous substances. The application of TiO2
anoparticles has been studied in the treatment of water (e.g.,
aste water and groundwater) with, often poorly degradable,
rganic substances (e.g., [1–10,21–23,26–29]), the removal
f benzothiophene from diesel fuel [11], the breakdown of
rude oil [12] and the degradation of air pollutants, espe-
ially nitrogenoxide(s), sulphuroxides and volatile organics
e.g., [13–16,21,24,25,30,32,40]). The reduction of metal ions
n water has also been studied [36]. A number of studies have
ocussed on the performance of TiO2 suspensions, as these allow
or relatively high surface areas of catalysts per unit of reactor
olume and maximum exploitation of the specific surface area
f nanoparticles (e.g., [2,8,15,17–23,28,30,32]).

Degradation of hazardous substances by TiO2 is linked
o redox reactions. Absorption of photons by TiO2 leads to

hoto-excitation: the formation of electron–positive hole pairs.
eaction with the positive hole is linked to oxidation and reac-

ion with the electron to reduction [1,3,21,25]. The frequency of
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uch reactions per unit of mass of TiO2 can be much enhanced
y exploiting nanoparticles that have a relatively large surface
rea (e.g., [1–3,21,22,37–39]). Enhancement of photocatalytic
ctivity is possible by manipulating the physico-chemical char-
cter of the nanoparticle surface, to increase adsorbability of
azardous substances that are to be degraded and to decrease
he probability of recombination of electrons and positive holes
38,40].

A drawback of TiO2 is that the photo-excitation requires
hotons in the near ultraviolet part of the spectrum, which cor-
esponds with 3–5% of solar irradiation. This has led to efforts
o shift photo-excitation to the visible part of the solar spec-
rum. Also, inactivation of TiO2 may occur due to the deposition
f organics on the particle surface. Maximizing the photocat-
lytic effect of TiO2 nanoparticles, shifting photo-excitation to
onger wavelengths and minimizing deactivation has become
n active area of research, partly involving the combination of
iO2 nanoparticles with other substances (e.g., as dopants or
anoparticles), including a variety of metals used as dopants
e.g., [1–4,6,16,22,23,25,28,33,34,38–52]).

Interestingly, the possibility that the TiO2 nanoparticles
hemselves may be hazardous, has not figured prominently
n considering applications of such particles in environmental

echnology. To the extent that hazard is referred to by authors
nvolved in the development of TiO2 nanoparticle applications,
t has been stressed that photocatalytic TiO2 nanoparticles are
on-toxic [8,24,32,39,52–60], safe [13,33], or harmless [20,61].

mailto:l.reijnders@uva.nl
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. The hazard of TiO2 nanoparticles

Substantial research has been done regarding the hazard of
iO2 nanoparticles. This research has considered the inhala-

ion of such nanoparticles by mammals, mammalian ingestion
f TiO2 nanoparticles, the effects of dermal contact, the effect
n microbes and some aspects of aquatic ecotoxicity. It has
urned out that whereas large TiO2 particles are characterized
y a very low hazard, the hazard of TiO2 nanoparticles may be
ifferent.

On discharge into air, TiO2 nanoparticles may be inhaled and
eposited in the lungs. In this context, Warheit et al. [62] have
tudied the effect of intratracheally instilled TiO2 particles in
ats. They found evidence for pulmonary inflammation, cytotox-
city and adverse lung effects. The hazard of TiO2 nanoparticles
as less than that of quartz nanoparticles. In other studies, it has
een found that the negative impact increases when the surface
rea of TiO particles increases and when the number of TiO2
articles increases [63–67]. These phenomena may be mediated
y oxidative stress and impaired phagocytosis by macrophages
64,66,67]. Dependent on other exposures to particulate matter,
nhalation of TiO2 nanoparticles may increase lung morbidity
64,68]. The hazard of a specified mass of TiO2 nanoparticles
o lung tissue increases when number and surface area increase,
nd may be further increased by the presence of metals such as
, Fe, Cr or Ni that may be used as dopants or are deposited
n the TiO2 nanoparticles during environmental applications
21,22,31,36,41,64,69–72]. Also, Kapp et al. [73] and Geiser et
l. [74] have shown that 5 nm sized TiO2 nanoparticles rapidly
ranslocate from the rat lung to the vascular system. This may be
inked with hazard of TiO2 nanoparticles to the cardiovascular
ystem [75] and to other organs [64,68]. The former may lead
o increased cardiovascular morbidity [51,64,75].

Warheit et al. [62] performed acute dermal irritation stud-
es on intact skin and found that TiO2 nanoparticles are not a
kin irritant or a dermal sensitizer. However, there is some evi-
ence that when photocatalytically active TiO2 nanoparticles
re present on a skin with a damaged stratum corneum (upper
ayer), there may be a hazard [68]. In this case, when there is
olar irradiation of the skin, there may be photochemical damage
o living skin cells [68].

Acute oral toxicity studies have demonstrated very low acute
oxicity of TiO2 nanoparticles [62]. However, there is also evi-
ence suggesting that TiO2 nanoparticles may cause immune
eactions of the intestines after oral intake, which may be linked
o chronic toxicity, and there is a possibility that part of the
ngested nanoparticles may be translocated from the intestines
nd deposited in organs [76–78]. At high levels of exposure this,
n turn, may lead to inflammation [78].

Photocatalytically active TiO2 nanoparticles may have
ntimicrobial effects in the presence of solar irradiation [64,79].
s to aquatic ecotoxicity, Warheit et al. [62] found that TiO
anoparticles exhibited medium concern in a 72 h acute test

sing the green algae Pseudokirchinella subcapitata. Exposure
f rainbow trout to TiO2 nanoparticles has shown to be associ-
ted with respiratory distress, intestinal erosion and disturbances
n the metabolism of Cu and Zn [80].

n
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p
c

aterials 152 (2008) 440–445 441

All in all, there is evidence that TiO2 nanoparticles present
hazard, though the determination of the precise character and

ize of that hazard awaits further investigation.

. Hazard reduction strategies

Against this background, it would seem worthwhile to con-
ider ways to limit hazards of TiO2 nanoparticles applied in
nvironmental technology.

Efforts limiting the hazard of TiO2 particles attention have
artly focused on the application of coatings and dopant ions that
educe the photocatalytic activity of these particles [81–83]. This
trategy evidently makes no sense for applications in environ-
ental technology as these rely on photocatalytic activity and

ctually tend to aim at maximizing such activity.
A second hazard reduction strategy regards the crystal struc-

ure of TiO2 [76]. TiO2 may occur as brookite, rutile or anatase.
esearch into photocatalytic applications of TiO2 nanoparticles
as mainly focussed on anatase and rutile.

Anatase and rutile differ in their interactions with cells. It
as been pointed out that anatase is more cytotoxic than rutile
84]. However, TiO2 preparations consisting mainly or fully of
natase also appear to be preferred in environmental technology.
ften such preparations do better in the photocatalytic degra-
ation of hazardous substances than rutile though occasionally
natase/brookite mixtures or anatase/rutile mixtures with occa-
ionally high percentages of rutile did better than pure anatase
e.g., [2,22,39,43,44,85–87]). Thus, replacing anatase by rutile
ould seem a hazard reduction strategy with very limited poten-

ial.
A third hazard reduction strategy is to immobilize TiO2

anoparticles on supports or substrates. Such immobilization
lso circumvents a problem that has emerged in using TiO2
anoparticles in suspension: the troublesome separation of
anoparticles after treatment [13,21]. Many examples of tech-
ologies that may be considered for the immobilization of TiO2
anoparticles on supports have been described. The technologies
hat may be used for this purpose in part employ precursors, such
s organic Ti compounds, for in situ growth of nanoparticles.
ther technologies use pre-existing TiO2 nanoparticles.
One approach to immobilization aims at composite

anoparticles. Here the focus has been on TiO2 coated
ultiwalled carbon nanotubes [88–91]. Many authors (e.g.,

1–3,8,9,15,16,24–27,29,35–38,40–43,53–55,92–98]) have
tudied the immobilization of TiO2 nanoparticles on much
arger supports, often in the form of coatings or thin films,
y processes such as metal oxide chemical vapour deposition
CVD) and infiltration, liquid phase deposition, barrier-
orch discharge-, ion beam enhanced-, arc- and pulsed laser
eposition, sol–gel methods, including dip coating, a vari-
ty of technologies involving spraying and sputtering and
lectrophoretic deposition.

After immobilization part of the surface area of TiO2

anoparticles will be unavailable for photocatalysis. This leads,
eteris paribus, to lowered photocatalytic activity, and this
henomenon becomes relatively more important when parti-
les become smaller [27,99]. Also the photocatalytically active
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rea per unit of reactor volume may be lower than in case of
uspensions. On the other hand, especially when porous sub-
trates such as zeolites or activated carbon are used, adsorption
f pollutants may be enhanced, and this may favour photo-
atalytic conversion, though it should be noted that very high
urface areas of such substrates might reduce photocatalytic
ctivity [9,27,100]. Also immobilization may lead to reduced
ositive hole–electron recombination favouring the degradation
f hazardous substances [9]. All in all, it has been found in a
umber of instances that immobilized TiO2 may be an effective
hotocatalyst (e.g., [1–3,8,9,15,16,25–27,29,35,38]).

For the purpose of hazard reduction the use of TiO2 coated
ultiwalled carbon nanotubes may be considered doubtful. The

recise hazards of such nanotubes have been studied incom-
letely, but research done so far has not been favourable. There
s evidence that carbon nanotubes may elicit a toxic response
hen they are inhaled and deposited in the lungs that is much

tronger than in case of amorphous carbon nanoparticles [101].
oreover carbon nanotubes have characteristics that suggest a

ossible accumulation along the food chain and high persistence
101]. It also seems likely that the nanotubes may be subject to
hotocatalytic degradation [29,42,94], leading to deterioration
f the catalytic performance [102] and possibly to the release of
iO2 nanoparticles.

The use of larger supports would seem a more promising
pproach to hazard reduction. The hazards linked to the prepara-
ion thereof should be considered. In this context, the precursors
sed (often organotitanium compounds), additives used in pro-
essing such as organic solvents [103], and the nanoparticles that
o not become immobilized merit consideration. To limit the
azard from the latter high efficiency in situ growth of TiO2 par-
icles, minimizing the amount of nanoparticles not immobilized
n the support, would seem an interesting option.

To facilitate bonding of TiO2 in case of fixation on synthetic
rganic supports coupling agents have been used [96] and in
ase of polycarbonate pre-treatment to increase the presence of
henolic OH groups [97].

When TiO2 nanoparticles are immobilized by linking them to
arge supports, there is the possibility that they may be released.

hen TiO2 particles are immobilized on an organic support such
s carbon [29,42,102], synthetic organic polymers [37,96,102]
r fibrous material [54,104], it is possible that the support is
hotocatalytically degraded during its application and this may
ead to the release of nanoparticles.

In the case of a stainless steel support, there is evidence that
hotocatalytic activity may lead to the release of Fe and Cr
ations [98], and this in turn may lead to the loss of TiO2 nanopar-
icles. Moreover it would seem that when photocatalytic activity
ffects the substrate the conversion of air and water pollutants
an be negatively affected [98,102].

Glass, silicate, zeolite and ceramic supports do not seem to be
nfluenced by nanoparticulate photocatalytic activity. However,
hen ceramic inorganic supports are used to degrade volatile

rganics in the gas phase, loss of photocatalytical activity due
o erosion has been noted [92]. In case of commercially avail-
ble glass beads covered with TiO2 nanoparticles significant
ttrition of the TiO2 film was found on application in water

A

a
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reatment [105]. It is not clear in these cases what the size
as of the particles that were released on erosion or attrition.
oss of photocatalytically active nanoparticles from substrates
ith immobilized TiO2 may also be linked to processes such as
aintenance (e.g., cleaning and regeneration) and wear due to

rocesses in the disposal or recycling stage [82].
Loss of nanoparticles from supports that are not photocat-

lytically degraded would seem to depend partly on the strength
f bonding between nanoparticles and the substrate used. In
his context it may be noted that on application of some vari-
ties of sol–gel technologies and chemical vapour deposition
echnology, bonding strength between TiO2 nanoparticles and
ubstrates has been found to be low [44].

There is evidence that bonding on inorganic supports can
e improved when TiO2 is subjected to melting [42]. However
his strongly favours the formation of rutile [28,46,106–109],
hich, though more wear resistant [110] is, as pointed out

bove, in many cases less conducive to photocatalytic degra-
ation of hazardous substances than anatase. It may also be
oted that better bonding between substrate and nanoparticles
nd better resistance against nanoparticle loss can be correlated
ith decreased specific surface area available for photocatal-
sis [22]. This implies that there may be a trade off between
hotocatalytic activity and the actual release of nanoparti-
les.

Still from the point of view of hazard reduction, immobi-
ization of TiO2 nanoparticles should be designed in such a
ay that the release of nanoparticles during the life cycle of

he catalyst (‘from cradle to grave’) is minimized, while the
mmobilization of TiO2, usually preferentially anatase, nanopar-
icles is favoured. To the extent that immobilization is not
rreversible, design should preferably be such that relatively
arge inorganic particles are released. The preference for rel-
tively large inorganic particles is linked to the finding that
azard of such particles, ceteris paribus, tends to increase when
he diameter becomes smaller [64,67]. As to the potential for
his approach, a parallel may be drawn with the nanoparticu-
ate Pt group catalysts that are applied in catalytic converters
or motorcars. In this case, �90% of the Pt that is released
rom converters has been found in inorganic particles > 100 nm
111–114].

. Conclusion

High efficiency immobilization of TiO2 nanoparticles on
arge inorganic supports that are not vulnerable to photocatalytic
egradation is conducive to hazard reduction. Immobilization
hould also aim at minimizing the release of TiO2 nanoparticles
rom such supports due to attrition. In doing so there may be a
rade of between hazard and photocatalytic activity.
cknowledgements
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